Statistical characterization of pulsar glitches and their potential impact on searches for continuous gravitational waves
نویسندگان
چکیده
Continuous gravitational waves from neutron stars could provide an invaluable resource to learn about their interior physics. A common search method involves matched-filtering a modeled template against the noisy gravitational-wave data to find signals. This method suffers a mismatch (i.e. relative loss of signal-to-noise ratio) if the signal deviates from the template. One possible instance in which this may occur is if the neutron star undergoes a glitch, a sudden rapid increase in the rotation frequency seen in the timing of many radio pulsars. In this work, we use a statistical characterization of glitch rate and size in radio pulsars to estimate how often neutron star glitches would occur within the parameter space of continuous gravitational-wave searches, and how much mismatch putative signals would suffer in the search due to these glitches. We find that for many previous and potential future searches, continuous-wave signals have an elevated probability of undergoing one or more glitches, and that these glitches will often lead to a substantial fraction of the signal-to-noise ratio being lost. This could lead to a failure to identify candidate gravitational wave signals in the initial stages of a search, and also to the false dismissal of candidates in subsequent follow-up stages.
منابع مشابه
An Evidence Based Time-Frequency Search Method for Gravitational Waves from Pulsar Glitches
We review and expand on a Bayesian model selection technique for the detection of gravitational waves from neutron star ring-downs associated with pulsar glitches. The algorithm works with power spectral densities constructed from overlapping time segments of gravitational wave data. Consequently, the original approach was at risk of falsely identifying multiple signals where only one signal wa...
متن کاملSearching for gravitational waves from the Crab pulsar - the problem of timing noise
Of the current known pulsars, the Crab pulsar (B0531+21) is one of the most promising sources of gravitational waves. The relatively large timing noise of the Crab causes its phase evolution to depart from a simple spin-down model. This effect needs to be taken in to account when performing time domain searches for the Crab pulsar in order to avoid severely degrading the search efficiency. The ...
متن کاملA Decision between Bayesian and Frequentist Upper Limit in Analyzing Continuous Gravitational Waves
Given the sensitivity of current ground-based Gravitational Wave (GW) detectors, any continuous-wave signal we can realistically expect will be at a level or below the background noise. Hence, any data analysis of detector data will need to rely on statistical techniques to separate the signal from the noise. While with the current sensitivity of our detectors we do not expect to detect any tru...
متن کاملImage-based deep learning for classification of noise transients in gravitational wave detectors
The detection of gravitational waves has inaugurated the era of gravitational astronomy and opened new avenues for the multimessenger study of cosmic sources. Thanks to their sensitivity, the Advanced LIGO and Advanced Virgo interferometers will probe a much larger volume of space and expand the capability of discovering new gravitational wave emitters. The characterization of these detectors i...
متن کاملDetectable Sources of Continuous Gravitational Waves ? Kimberly
Laboratory searches for the detection of gravitational waves have focused on the detection of burst signals emitted during a supernova explosion, but have not resulted in any confirmed detections. An alternative approach has been to search for continuous wave (CW) gravitational radiation from the Crab pulsar. In this paper, we examine the possibility of detecting CW gravitational radiation from...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017